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Abstract

This paper extends the account of actual causation offered by Halpern and Pearl [2005]. We
show that this account yields the wrong judgment in certain classes of cases. We offer a revised def-
inition that incorporates consideration of defaults, typicality, and normality. The revised definition
takes actual causation to be both graded and comparative. We then apply our definition to a number
of cases.

1 Introduction

This paper extends a recent account of actual causation due to Halpern and Pearl [2005] (HP hereafter).
By “actual causation” (also called “singular causation”, “token causation”, or just “causation” in the
literature), we mean that relation that we judge to hold when we affirm a statement that one particular
event caused another. These claims are typically made retrospectively, and expressed in the past tense.
For example, the following claims all describe relations of actual causation:

• Paula’s putting poison in the tea caused Victoria to die.

• A lightning strike caused the forest fire.

• The ignition of the rum aboard the ship caused Lloyd’s of London to suffer a large financial loss.

Actual causation is the target of analysis, for example, in David Lewis’s classic paper “Causation”
[Lewis 1973] (although he calls it simply “causation”). This relation has been of interest in philosophy
and the law in part because of its connection with issues of moral and legal responsibility (see for
example, Moore [2009] for a detailed discussion of these connections).
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Getting an adequate definition of actual causation has proven exceedingly difficult. There are lit-
erally hundreds of papers in fields as diverse as philosophy, law, economics, physics, and computer
science proposing and criticizing definitions of actual causation. The definition due to HP uses struc-
tural equations. The intuition behind this definition, which goes back to Hume [1748], is that A is a
cause of B if, had A not happened, B would not have happened. As is well known, this definition is too
naive. To take an example due to Wright [1985], suppose that Victoria, the victim, drinks a cup of tea
poisoned by Paula, but before the poison takes effect, Sharon shoots Victoria, and she dies. We would
like to call Sharon’s shot the cause of the Victoria’s death, but if Sharon hadn’t shot, Victoria would have
died in any case. HP deal with this by, roughly speaking, considering the contingency where Sharon
does not shoot. Under that contingency, Victoria dies if Paula administers the poison, and otherwise
does not. To prevent the poisoning from also being a cause of Paula’s death, HP put some constraints
on the contingencies that could be considered. There are a number of closely related definitions in the
literature, including an earlier version by Halpern and Pearl [2001], as well as offerings from Pearl
[2000], Hitchcock [2001], Woodward [2003], Hall [2007], and Glymour and Wimberly [2007]. With
the exception of [Halpern and Pearl 2001], we do not discuss any of these alternative theories explicitly.
Nonetheless, we expect that it is possible to extend these theories along much the same lines we propose
for the HP theory.

The HP theory faces several problems. In particular, Hall [2007] and Hiddleston [2005] argue that
the HP definition gives inappropriate answers in “bogus prevention” and “short circuit” cases, which
seem to have structural equations isomorphic to ones where the HP definition gives the appropriate
answer. This suggests that there must be more to actual causation than just the structural equations. One
approach to solving these problems, suggested by Hall [2007], Halpern [2008], and Hitchcock [2007],
is to incorporate considerations about about defaults, typicality, and normality. In the present paper, we
develop this approach in greater detail.

Our approach lets us do much more than just deal with bogus prevention and short circuits.1 It also
allows us to move away from causality being an all or nothing assignment—either A is a cause of B
or it is not—to a more “graded” notion of causality. We can then talk about one event being viewed as
more of a cause than another. To the extent that we tend to view one event as “the” cause, it is because
it is the one that is the “best” cause.

Our approach also allows us to make sense of cases where people disagree about claims of actual
causation, despite being in agreement about the underlying structure of a particular case. Consider, for
example, cases of causation by omission. Suppose that while a homeowner is on vacation, the weather
is hot and dry, and the flowers in her garden die. Had her next door neighbor watered the flowers, they
would not have died. Is the neighbor’s failure to water the flowers an actual cause of the flowers’ death?
The structure of the case is clear: the flowers would not have died if the weather had not been so hot
and dry, or if someone had watered them. Nonetheless, different writers disagree about whether this is
a case of actual causation (see Section 7.2 for details and references). If these diverse authors are not
disagreeing about the underlying structure of the case, what is the source of their disagreement about the
actual causation claim? By building norms, typicality, and defaults into our account of actual causation,
we can accommodate and explain these differing judgments.

The rest of the paper is organized as follows. In the next two sections, we review the causal modeling
framework that we employ, and the HP definition of actual causation. More details, intuition, and

1Indeed, although dealing with bogus prevention was the motivation for this work, as we show in Section 7.1, we actually
can deal with this problem by an appropriate choice of structural equations, without appealing to normality.
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motivation can be found in [Halpern and Pearl 2005] and the references therein; the discussion here
is largely taken from [Halpern 2008]. Readers who are already familiar with these may skim these
sections. In Section 4, we briefly review some of the problems faced by the HP theory. In Section 5,
we informally introduce the notions of defaults, typicality, and normality, and provide some further
motivation for incorporating these notions into a theory of actual causation. Section 6 contains our
formal treatment of these notions, and presents our revised, graded definition of actual causation. We
conclude by applying the revised definition to a number of examples.

2 Causal Models

The HP approach models the world using random variables and their values. For example, if we are
trying to determine whether a forest fire was caused by lightning or an arsonist, we can construct a
model using three random variables:

• FF for forest fire, where FF = 1 if there is a forest fire and FF = 0 otherwise;

• L for lightning, where L = 1 if lightning occurred and L = 0 otherwise;

• M for match (dropped by arsonist), where M = 1 if the arsonist drops a lit match, and M = 0
otherwise.

The choice of random variables determines the language used to frame the situation. Although there is
no “right” choice, clearly some choices are more appropriate than others. For example, when trying to
determine the cause of the forest fire, if there is no random variable corresponding to the lightning in a
model then, in that model, we cannot hope to conclude that lightning is a cause of the forest fire.

Some random variables may have a causal influence on others. This influence is modeled by a set
of structural equations. For example, to model the fact that if a match is lit or lightning strikes then a
fire starts, we could use the random variables M , FF , and L as above, with the equation

FF = max(L,M ).

Since the value of FF is the maximum of the values of L and M , FF is 1 if either of L and M is 1.
Alternatively, if a fire requires both a lightning strike and a dropped match (perhaps the wood is so wet
that it needs two sources of fire to get going), the appropriate equation for FF would be

FF = min(L,M );

the value of FF is the minimum of the values of L and M . The only way that FF = 1 is if both L = 1
and M = 1. For future reference, we call the model that uses the first equation the disjunctive model,
and the one that uses the second equation the conjunctive model.

The equality signs in these equations should be thought of more like assignment statements in pro-
gramming languages than normal algebraic equalities. For example, the first equation tells us that once
we set the values of M and L, then the value of FF is set to their maximum. This relation is not sym-
metric; if a forest fire starts some other way, that does not force the value of either M or L to be 1. This
asymmetry corresponds to the asymmetry in what Lewis [1979] calls “non-backtracking” counterfactu-
als. Suppose that there actually was no lightning, and the arsonist did not drop a match. Then (using

3



non-backtracking counterfactuals), we would say that if lightning had struck or the arsonist had lit her
match, then there would have been a fire. However, we would not say that if there had been a fire, then
either lightning would have struck, or the arsonist would have lit her match.

These models are somewhat simplistic. Lightning does not always result in a fire, nor does dropping
a lit match. One way of dealing with this would be to make the assignment statements probabilistic.
For example, we could say that the probability that FF = 1 conditional on L = 1 is .8. This approach
would lead to rather complicated definitions. It is much simpler to think of all the equations as being
deterministic and, intuitively, use enough variables to capture all the conditions that determine whether
there is a forest fire are captured by random variables. One way to do this is simply to add those variables
explicitly. For example, we could add variables that talk about the dryness of the wood, the amount of
undergrowth, the presence of sufficient oxygen, and so on. If a modeler does not want to add all these
variables explicitly (the details may simply not be relevant to the analysis), another alternative is to
use a single variable, say U , which intuitively incorporates all the relevant factors, without describing
them explicitly. The value of U would determine whether the lightning strikes and whether the match
is dropped by the arsonist. In this way of modeling things, U would take on four possible values of the
form (i, j), where i and j are both either 0 or 1. Intuitively, i describes whether the external conditions
are such that the lightning strikes (and encapsulates all the conditions, such as humidity and temperature,
that affect whether the lightning strikes); and j describes whether the arsonist drops the match (and thus
encapsulates the psychological conditions that determine whether the arsonist drops the match).

It is conceptually useful to split the random variables into two sets: the exogenous variables, whose
values are determined by factors outside the model, and the endogenous variables, whose values are
ultimately determined by the exogenous variables. In the forest-fire example, the variables M , L, and
FF are endogenous. However, we want to take as given that there is enough oxygen for the fire and
that the wood is sufficiently dry to burn. In addition, we do not want to concern ourselves with the
factors that make the arsonist drop the match or the factors that cause lightning. Thus we do not include
endogenous variables for these factors. However, their effects are nonetheless incorporated into the
exogenous variable(s).

Formally, a causal model M is a pair (S,F), where S is a signature, which explicitly lists the
endogenous and exogenous variables and characterizes their possible values, and F defines a set of
modifiable structural equations, relating the values of the variables. A signature S is a tuple (U ,V,R),
where U is a set of exogenous variables, V is a set of endogenous variables, and R associates with
every variable Y ∈ U ∪ V a nonempty setR(Y ) of possible values for Y (that is, the set of values over
which Y ranges). As suggested above, in the forest-fire example, we have U = {U}, where U is the
exogenous variable,R(U) consists of the four possible values of U discussed earlier, V = {FF , L,M },
andR(FF ) = R(L) = R(M ) = {0, 1}.
F associates with each endogenous variable X ∈ V a function denoted FX such that

FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y ))→ R(X).

This mathematical notation just makes precise the fact that FX determines the value of X , given the
values of all the other variables in U ∪ V . If there is one exogenous variable U and three endogenous
variables, X , Y , and Z, then FX defines the values of X in terms of the values of Y , Z, and U . For
example, we might have FX(u, y, z) = u+ y, which is usually written as X = U +Y .2 Thus, if Y = 3

2Again, the fact that X is assigned U + Y (i.e., the value of X is the sum of the values of U and Y ) does not imply that Y
is assigned X − U ; that is, FY (U,X,Z) = X − U does not necessarily hold.
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and U = 2, then X = 5, regardless of how Z is set.
In the running forest-fire example, where U has four possible values of the form (i, j), the i value

determines the value of L and the j value determines the value of M . Although FL gets as arguments
the values of U , M , and FF , in fact, it depends only on the (first component of) the value of U ; that is,
FL((i, j),m, f) = i. Similarly, FM ((i, j), l, f) = j. In this model, the value of FF depends only on
the value of L and M . How it depends on them depends on whether we are considering the conjunctive
model or the disjunctive model.

It is sometimes helpful to represent a causal model graphically. Each node in the graph corresponds
to one variable in the model. An arrow from one node, say L, to another, say FF , indicates that the
former variable figures as a nontrivial argument in the equation for the latter. Thus, we could represent
either the conjunctive or the disjunctive model using Figure 2(a). Often we omit the exogenous variables
from the graph; in this case, we would represent either model using Figure 2(b). Note that the graph
conveys only the qualitative pattern of dependence; it does not tell us how one variable depends on
others. Thus the graph alone does not allow us to distinguish between the disjunctive and the conjunctive
models.
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Figure 1: A graphical representation of structural equations.

The key role of the structural equations is to define what happens in the presence of external in-
terventions. For example, we can explain what would happen if one were to intervene to prevent the
arsonist from dropping the match. In the disjunctive model, there is a forest fire exactly exactly if there
is lightning; in the conjunctive model, there is definitely no fire. Setting the value of some variable X
to x in a causal model M = (S,F) by means of an intervention results in a new causal model denoted
MX=x. MX=x is identical to M , except that the equation for X in F is replaced by X = x. We
sometimes talk of “fixing” the value of X at x, or “setting” the value of X to x. These expressions
should also be understood as referring to interventions on the value of X . Note that an “intervention”
does not necessarily imply human agency. The idea is rather that some independent process overrides
the existing causal structure to determine the value of one or more variables, regardless of the value
of its (or their) usual causes. Woodward [2003] gives a detailed account of such interventions. Lewis
[1979] suggests that we think of the antecedents of non-backtracking counterfactuals as being made true
by “small miracles”. These “small miracles” would also count as interventions.

It may seem circular to use causal models, which clearly already encode causal information, to de-
fine actual causation. Nevertheless, there is no circularity. The models do not directly represent relations
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of actual causation. Rather, they encode information about what would happen under various possible
interventions. Equivalently, they encode information about which non-backtracking counterfactuals are
true. We will say that the causal represent (perhaps imperfectly or incompletely) the underlying causal
structure. While there may be some freedom of choice regarding which variables are included in a
model, once an appropriate set of variables has been selected, there should be an objective fact about
which equations among those variables correctly describe the effects of interventions on some particu-
lar system of interest.3 Perhaps it will be possible to analyze these relations completely in non-causal
terms, as Lewis [1979] hoped. Perhaps it will not be. In either event, causal structure is distinct from
actual causation, and an account of actual causation in terms of causal models is no more circular than
Lewis’s analysis of “causation” (really actual causation) in terms of non-backtracking counterfactuals.

In a causal model, it is possible that the value ofX can depend on the value of Y (that is, the equation
FX is such that changes in Y can change the value of X) and the value of Y can depend on the value
of X . Intuitively, this says that X can potentially affect Y and that Y can potentially affect X . While
allowed by the framework, this type of situation does not happen in the examples of interest; dealing
with it would complicate the exposition. Thus, for ease of exposition, we restrict attention here to what
are called recursive (or acyclic) models. This is the special case where there is some total ordering <
of the endogenous variables (the ones in V) such that if X < Y , then X is independent of Y , that is,
FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all y, y′ ∈ R(Y ). If X < Y , then the value of X may affect the
value of Y , but the value of Y cannot affect the value of X .4 Intuitively, if a theory is recursive, there
is no feedback. The graph representing an acyclic causal model does not contain any directed paths
leading from a variable back into itself, where a directed path is a sequence of arrows aligned tip to tail.

If M is an acyclic causal model, then given a context, that is, a setting ~u for the exogenous variables
in U , there is a unique solution for all the equations. We simply solve for the variables in the order given
by <. The value of the variables that come first in the order, that is, the variables X such that there is
no variable Y such that Y < X , depend only on the exogenous variables, so their value is immediately
determined by the values of the exogenous variables. The values of values later in the order can be
determined once we have determined the values of all the variables earlier in the order.

There are many nontrivial decisions to be made when choosing the structural model to describe a
given situation. One significant decision is the set of variables used. As we shall see, the events that
can be causes and those that can be caused are expressed in terms of these variables, as are all the
intermediate events. The choice of variables essentially determines the “language” of the discussion;
new events cannot be created on the fly, so to speak. In our running example, the fact that there is
no variable for unattended campfires means that the model does not allow us to consider unattended
campfires as a cause of the forest fire.

Once the set of variables is chosen, the next step is to decide which are exogenous and which are
endogenous. As we said earlier, the exogenous variables to some extent encode the background situation
that we want to take for granted. Other implicit background assumptions are encoded in the structural
equations themselves. Suppose that we are trying to decide whether a lightning bolt or a match was the
cause of the forest fire, and we want to take for granted that there is sufficient oxygen in the air and the
wood is dry. We could model the dryness of the wood by an exogenous variable D with values 0 (the

3Although as Halpern and Hitchcock [2010] note, some choices of variables do not give rise to well-defined equations.
This would count against using that set of variables to model the system of interest.

4This standard restriction is also made by HP except in the appendix of [Halpern and Pearl 2005].
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wood is wet) and 1 (the wood is dry).5 By makingD exogenous, its value is assumed to be given and out
of the control of the modeler.6 We could also take the amount of oxygen as an exogenous variable (for
example, there could be a variable O with two values—0, for insufficient oxygen, and 1, for sufficient
oxygen). Alternatively, we could choose not to model moisture and oxygen explicitly at all. By using
the equation FF = max(L,M), we are saying that the wood will burn if the match is lit or lightning
strikes. Thus, the equation is implicitly modeling our assumption that there is sufficient oxygen for the
wood to burn.

It is not always straightforward to decide what the “right” causal model is in a given situation. In
particular, there may be disagreement about which variables to use, and which should be exogenous
and endogenous (although if the variables are well-chosen, it should at least be clear what the equations
among them should be, at least if the behavior of the system is understood). These decisions often lie at
the heart of determining actual causation in the real world. While the formalism presented here does not
provide techniques to settle disputes about which causal model is the right one, at least it provides tools
for carefully describing the differences between causal models, so that it should lead to more informed
and principled decisions about those choices. (Again, see [Halpern and Hitchcock 2010] for further
discussion of these issues.)

3 The HP Definition of Actual Causation

To make the definition of actual causality precise, it is helpful to have a formal language for coun-
terfactuals and interventions. Given a signature S = (U ,V,R), a primitive event is a formula of
the form X = x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 = y1, . . . , Yk = yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables in V , and

• yi ∈ R(Yi).

Such a formula is abbreviated [~Y = ~y]ϕ. The special case where k = 0 is abbreviated as ϕ. Intuitively,
[Y1 = y1, . . . , Yk = yk]ϕ says that ϕ would hold if each Yi were set to yi by an intervention, for
i = 1, . . . , k.

A causal formula ϕ is true or false in a causal model, given a context. We write (M,~u) |= ϕ if
the causal formula ϕ is true in causal model M given context ~u. The |= relation is defined inductively.
(M,~u) |= X = x if the variable X has value x in the unique solution to the equations in M in context
~u (that is, the unique vector of values for the endogenous variables that simultaneously satisfies all
equations in M with the variables in U set to ~u). The truth of conjunctions and negations is defined in
the standard way. Finally, (M,~u) |= [~Y = ~y]ϕ if (M~Y=~y, ~u) |= ϕ.

For example, if M is the disjunctive causal model for the forest fire, and u is the context where
there is lightning and the arsonist drops the lit match, then (M,u) |= [M = 0](FF = 1), since even if

5Of course, in practice, we may want to allow D to have more values, indicating the degree of dryness of the wood, but
that level of complexity is unnecessary for the points we are trying to make here.

6See Section 7.4 for an alternative way of dealing with events that we want to take as given.
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the arsonist is somehow prevented from dropping the match, the forest burns (thanks to the lightning);
similarly, (M,u) |= [L = 0](FF = 1). However, (M,u) |= [L = 0;M = 0](FF = 0): if the arsonist
does not drop the lit match and the lightning does not strike, then the forest does not burn.

The HP definition of causality, like many others, is based on counterfactuals. The idea is that A is
a cause of B if, if A hadn’t occurred (although it did), then B would not have occurred. This idea goes
back to at least Hume [1748, Section VIII], who said:

We may define a cause to be an object followed by another, . . . , if the first object had not
been, the second never had existed.

This is essentially the but-for test, perhaps the most widely used test of actual causation in tort adju-
dication. The but-for test states that an act is a cause of injury if and only if, but for the act (i.e., had
the the act not occurred), the injury would not have occurred. David Lewis [1973] has also advocated a
counterfactual definition of causation.

There are two well-known problems with this definition. The first can be seen by considering the
disjunctive causal model for the forest fire again. Suppose that the arsonist drops a match and lightning
strikes. Which is the cause? According to a naive interpretation of the counterfactual definition, neither
is. If the match hadn’t dropped, then the lightning would still have struck, so there would have been a
forest fire anyway. Similarly, if the lightning had not occurred, there still would have been a forest fire.
As we shall see, the HP definition declares both lightning and the arsonist actual causes of the fire. (In
general, there may be more than one actual cause of an outcome.)

A more subtle problem is that of preemption, where there are two potential causes of an event, one
of which preempts the other. Preemption is illustrated by the following story, due to Hitchcock [2007]:

An assassin puts poison in a victim’s drink. If he hadn’t poisoned the drink, a backup
assassin would have. The victim drinks the poison and dies.

Common sense suggests that the assassin’s poisoning the drink caused the victim to die. However, it
does not satisfy the naive counterfactual definition either; if the assassin hadn’t poisoned the drink, the
backup would have, and the victim would have died anyway.

The HP definition deals with these problems by defining actual causation as counterfactual de-
pendence under certain contingencies. In the forest-fire example, the forest fire does counterfactually
depend on the lightning under the contingency that the arsonist does not drop the match; similarly, the
forest fire depends counterfactually on the arsonist’s match under the contingency that the lightning
does not strike. In the poisoning example, the victim’s death does dounterfactually depend on the first
assassin’s poisoning the drink under the contingency that the backup does not poison the drink (perhaps
because she is not present). However, we need to be careful here to limit the contingencies that can
be considered. We do not want to count the backup assassin’s presence as an actual cause of death by
considering the contingency where the first assassin does not poison the drink. We consider the first
assassin’s action to be the cause of death because it was her poison that the victim consumed. Somehow
the definition must capture this obvious intuition. A big part of the challenge of providing an adequate
definition of actual causation comes from trying get these restrictions just right.
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With this background, we now give the HP definition of causality.7 The definition is relative to a
causal model (and a context); A may be a cause of B in one causal model but not in another. The
definition consists of three clauses. The first and third are quite simple; all the work is going on in the
second clause.

The types of events that the HP definition allows as actual causes are ones of the form X1 =
x1 ∧ . . . ∧ Xk = xk—that is, conjunctions of primitive events; this is often abbreviated as ~X = ~x.
The events that can be caused are arbitrary Boolean combinations of primitive events. The definition
does not allow statements of the form “A or A′ is a cause of B”, although this could be treated as being
equivalent to “either A is a cause of B or A′ is a cause of B”. On the other hand, statements such as “A
is a cause of B or B′” are allowed; as we shall see, this is not equivalent to “either A is a cause of B or
A is a cause of B′”.

Definition 3.1: (Actual cause) [Halpern and Pearl 2005] ~X = ~x is an actual cause of ϕ in (M,~u) if the
following three conditions hold:

AC1. (M,~u) |= ( ~X = ~x) and (M,~u) |= ϕ.

AC2. There is a partition of V (the set of endogenous variables) into two subsets ~Z and ~W with ~X ⊆ ~Z,
and settings ~x′ and ~w of the variables in ~X and ~W , respectively, such that if (M,~u) |= Z = z∗

for all Z ∈ ~Z, then both of the following conditions hold:

(a) (M,~u) |= [ ~X = ~x′, ~W = ~w]¬ϕ.

(b) (M,~u) |= [ ~X = ~x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ for all subsets ~W ′ of ~W and all subsets ~Z ′ of ~Z,
where we abuse notation and write ~W ′ = ~w to denote the assignment where the variables in
~W ′ get the same values as they would in the assignment ~W = ~w (and similarly for ~Z).

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and AC2.

AC1 just says that ~X = ~x cannot be considered a cause of ϕ unless both ~X = ~x and ϕ actually
happen. AC3 is a minimality condition, which ensures that only those elements of the conjunction
~X = ~x that are essential for changing ϕ in AC2(a) are considered part of a cause; inessential elements
are pruned. Without AC3, if dropping a lit match qualified as a cause of the forest fire, then dropping a
match and sneezing would also pass the tests of AC1 and AC2. AC3 serves here to strip “sneezing” and
other irrelevant, over-specific details from the cause. Clearly, all the “action” in the definition occurs
in AC2. We can think of the variables in ~Z as making up the “causal path” from ~X to ϕ. Intuitively,
changing the value of some variable(s) in ~X results in changing the value(s) of some variable(s) in ~Z,
which results in the values of some other variable(s) in ~Z being changed, which finally results in the
truth value of ϕ changing. The remaining endogenous variables, the ones in ~W , are off to the side,
so to speak, but may still have an indirect effect on what happens. AC2(a) is essentially the standard
counterfactual definition of causality, but with a twist. If we want to show that ~X = ~x is a cause of ϕ, we
must show (in part) that if ~X had a different value, then so too would ϕ. However, this effect of the value
of ~X on the value of ϕ may not hold in the actual context; it may be necessary to intervene on the value
of one or more variables in ~W to allow this effect to manifest itself. For example, consider the context

7In fact, this is actually a preliminary definition in [Halpern and Pearl 2005], although it is very close the final definition.
We will ignore here the final modification, which will be supplanted by our new account. When we talk of “the HP definition”,
we should be understood as referring to Definition 3.1 below, rather than to the final definition in [Halpern and Pearl 2005].
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where both the lightning strikes and the arsonist drops a match in the disjunctive model of the forest fire.
Stopping the arsonist from dropping the match will not prevent the forest fire. The counterfactual effect
of the arsonist on the forest fire manifests itself only in a situation where the lightning does not strike
(i.e., where L is set to 0). AC2(a) is what allows us to call both the lightning and the arsonist causes of
the forest fire.

AC2(b) is perhaps the most complicated condition. It limits the “permissiveness” of AC2(a) with
regard to the contingencies that can be considered. Essentially, it ensures that the change in the value
~X alone suffices to bring about the change from ϕ to ¬ϕ; setting ~W to ~w merely eliminates possibly
spurious side effects that may mask the effect of changing the value of ~X . Moreover, although the
values of variables on the causal path (i.e., the variables ~Z) may be perturbed by the intervention on
~W , this perturbation has no impact on the value of ϕ. We capture the fact that the perturbation has
no impact on the value of ϕ by saying that if some variables Z on the causal path were set to their
original values in the context ~u, ϕ would still be true, as long as ~X = ~x. Note that it follows from
AC2(b) that an intervention that sets the value of the variables in ~W to their actual values is always
permissible. Such an intervention might still constitute a change to the model, since the value of one or
more variables in ~W might otherwise change when we change the value of ~X from ~x to ~x′. Note also
that if ϕ counterfactually depends on ~X = ~x, AC rules that ~X = ~x is an actual cause of ϕ (assuming
that AC1 and AC3 are both satisfied). We can simply take ~W = ∅; both clauses of AC2 are satisfied.

In an earlier paper, Halpern and Pearl [2001] offered a more permissive version of clause AC2(b).
That clause required that (M,~u) |= [ ~X = ~x, ~W = ~w, ~Z ′ = ~z∗]ϕ for all subsets ~Z ′ of ~Z. In other
words, it required only that this relation hold for the specific setting ~W = ~w, and not that it hold for
every setting ~W ′ = ~w where ~W ′ is a subset of ~W . The change was prompted by a counterexample due
to Hopkins and Pearl [2003]. It turns out that this counterexample can also be dealt with in the same
way that we deal with bogus prevention cases below (see Section 7.1). For continuity, however, we
continue to use the more recent definition from [Halpern and Pearl 2005]. We briefly discuss some of
the consequences of the alternate definition in the appendix.

We now show how the HP definition handles our two problematic cases.

Example 3.2: For the forest-fire example, let M be the disjunctive causal model for the forest fire
sketched earlier, with endogenous variables L, M , and FF , and equation FF = max(L,M ). Clearly
(M, (1, 1)) |= FF = 1 and (M, (1, 1)) |= L = 1; in the context (1,1), the lightning strikes and the
forest burns down. Thus, AC1 is satisfied. AC3 is trivially satisfied, since ~X consists of only one
element, L, so must be minimal. For AC2, take ~Z = {L,FF} and take ~W = {M }, let x′ = 0, and let
w = 0. Clearly, (M, (1, 1)) |= [L = 0,M = 0](FF 6= 1); if the lightning does not strike and the match
is not dropped, the forest does not burn down, so AC2(a) is satisfied. To see the effect of the lightning,
we must consider the contingency where the match is not dropped; the definition allows us to do that
by setting M to 0. (Note that here setting L and M to 0 overrides the effects of U ; this is critical.)
Moreover, (M, (1, 1)) |= [L = 1,M = 0](FF = 1); if the lightning strikes, then the forest burns down
even if the lit match is not dropped, so AC2(b) is satisfied. (Note that since ~Z = {L,FF}, the only
subsets of ~Z− ~X are the empty set and the singleton set consisting of just FF .) As this example shows,
the HP definition need not pick out a unique actual cause; there may be more than one actual cause of a
given outcome.

Example 3.3: For the poisoning example, we can include in our causal model M the following endoge-
nous variables:
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• A = 1 if the assassin poisons the drink, 0 if not;

• R = 1 if the backup is ready to poison the drink if necessary, 0 if not;

• B = 1 if the backup poisons the drink, 0 if not;

• D = 1 if the victim dies, 0 if not.

We also have an exogenous variable U that determines whether the first assassin poisons the drink and
whether the second assassin is ready. Let U have four values of the form (u1, u2) with ui ∈ {0, 1} for
i = 1, 2. The equations are

A = u1;
R = u2;
B = (1−A)×R;
D = max(A,B).

The third equation says that the backup poisons the drink if she is ready and the first assassin doesn’t
poison the drink. The fourth equation says that the victim dies if either assassin poisons the drink.
This model is represented graphically in Figure 3.3. In the actual context, where U = (1, 1), we have
A = 1, R = 1, B = 0, and D = 1. We want our account to give the result that A = 1 is an actual cause
of D = 1, while R = 1 is not.
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Figure 2: The poisoning example.

For the former, note that D = 1 does not counterfactually depend on A = 1: if A had been 0, B
would have been 1, and D would still have been 1. Nonetheless, Definition AC rules that A = 1 is an
actual cause of D = 1. It is easy to see that AC1 and AC3 are satisfied. A = 1 and D = 1 are both
true in the actual context where U = (1, 1), so AC1 is satisfied. Moreover, A = 1 is minimal, so AC3
is satisfied. For AC2, let ~Z = {A,D} and ~W = {R,B}, with ~x′ = 0 and ~w = (1, 0) (i.e., R = 1 and
B = 0). Checking AC2(a), we see that (M, (1, 1)) |= [A = 0, R = 1, B = 0](D 6= 1). That is, when
we intervene to set A to 0, R to 1, and B to 0, D takes a different value. While the victim’s death does
not counterfactually depend on the assassin’s poisoning the drink, counterfactual dependence is restored
if we also hold fixed that the backup did not act. Moreover, AC2(b) is also satisfied, for ~W = ~w is just
the setting R = 1 and B = 0, the values of R and B in the actual context. So if A also takes on its
actual vaue of 1, then D = 1. Note that we could also choose R = 0 and B = 0 for the setting ~W = ~w.
That is, it makes no difference to either part of AC2 if we intervene to prevent the backup from being
ready. Alternately, we could include R in ~Z instead of ~W ; again the analysis is unaffected.
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We now show that R = 1 is not an actual cause of D = 1. AC1 and AC3 are satisfied. In order
to satisfy AC2(a), we need ~x′ = 0, ~Z = {R,B,D}, ~W = {A}, and ~w′ = 0. In words, the only
way to get the victim’s death to counterfactually depend on the backup’s readiness is if we intervene
to prevent the first assassin from poisoning the drink. But now we can verify that these settings do not
also satisfy AC2(b). Since the actual value of B was 0, AC2(b) requires that in order for A = 0 to
be an admissible setting of ~W = {A}, we must have (M, (1, 1)) |= [A = 0, B = 0]D = 1. That
is, in order for A = 0 to be an admissible setting, this setting must not change the value of D, even if
variables such as B that are on the causal path from R to D are held fixed at their actual value. But this
condition fails: (M, (1, 1)) |= [A = 0, B = 0]D = 0. Holding fixed that the backup did not poison the
drink, if the assassin hadn’t poisoned the drink either, the victim would have not have died. Intuitively,
the idea is that the backup’s readiness can be an actual cause of death only if the backup actually put
poison in the drink. In this way, clause AC2(b) builds in the idea that there must be an appropriate
sort of causal chain or process in order for R = 1 to be an actual cause of D = 1. This example also
shows the importance of restricting the permissible contingencies that we can look at when re-evaluating
counterfactual dependence.

4 Problems for the HP Theory

While the definition of actual causation given in Definition 3.1 works well in many cases, it does not
always deliver answers that agree with (most people’s) intuition. Consider the following example of
“bogus prevention”, taken from Hitchcock [2007], based on an example due to Hiddleston [2005].

Example 4.1: Assassin is in possession of a lethal poison, but has a last-minute change of heart and
refrains from putting it in Victim’s coffee. Bodyguard puts antidote in the coffee, which would have
neutralized the poison had there been any. Victim drinks the coffee and survives. Is Bodyguard’s
putting in the antidote a cause of Victim surviving? Most people would say no, but according to the HP
definition, it is. For in the contingency where Assassin puts in the poison, Victim survives iff Bodyguard
puts in the antidote.

Example 4.1 illustrates what seems to be a significant problem with Definition 3.1. The structural
equations for Example 4.1 are isomorphic to those in the disjunctive version of the forest-fire example,
provided that we interpret the variables appropriately. Specifically, take the endogenous variables in
Example 4.1 to be A (for “assassin does not put in poison”), B (for “bodyguard puts in antidote”), and
VS (for “victim survives”). Then A, B, and VS satisfy exactly the same equations as L, M , and FF ,
respectively. In the context where there is lightning and the arsonists drops a lit match, both the the
lightning and the match are causes of the forest fire, which seems reasonable. But here it does not seem
reasonable that Bodyguard’s putting in the antidote is a cause. Nevertheless, any definition that just
depends on the structural equations is bound to give the same answers in these two examples.

A second type of case illustrating the same problem involves what Hall [2007] calls “short circuits”.
Hitchcock [2007] gives the following example (which he calls “CH” or “counterexample to Hitchcock”,
since it is a counterexample to the theory of [Hitchcock 2001]):

Example 4.2: A victim has two bodyguards charged with protecting him from assassination. The
bodyguards conspire to make it appear as though they have foiled an attempted poisoning. They plan
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to put poison in victim’s drink, and also to put in an antidote that will neutralize the poison. However,
they do not want to put the poison in until they are certain that the antidote has safely been put in the
drink. Thus, the first bodyguard adds antidote to the drink, and the second waits until the antidote has
been added before adding the poison. If the first bodyguard were interrupted, or somehow prevented
from putting the antidote in, the second would not add the poison. As it happens, both the antidote and
the poison are added, so the poison is neutralized; the victim drinks the harmless liquid and lives.

Most people, although by no means all, judge that putting the antidote into the drink is not an actual
cause of the victim’s survival. Put another way, administering the antidote did not prevent death. This
is because putting the antidote in the drink caused the very threat that it was meant to negate. If the
antidote weren’t put in, there would have been no poison to neutralize. However, it turns out that this
example has a structure that is isomorphic to the preemption example discussed earlier (Example 3.3).
This is not immediately obvious; we discuss the technical details in Section 7.7. For now, it suffices to
note that if we hold fixed that the second bodyguard puts in the poison, then intervening on whether the
first bodyguard puts in the antidote makes a difference for whether the victim dies.

In both kinds of case, examples that have isomorphic structural equation models are judged to have
different relations of actual causation. This suggests that there must be more to actual causation than
just the structural equations.

5 Defaults, Typicality, and Normality

Our revised account of actual causation incorporates the concepts of defaults, typicality, and normality.
These are related, although somewhat different notions:

• A default is an assumption about what happens, or what is the case, when no additional informa-
tion is given. For example, we might have as a default assumption that birds fly. If we are told
that Tweety is a bird, and given no further information about Tweety, then it is natural to infer
that Tweety flies. Such inferences are defeasible: they can be overridden by further information.
If we are additionally told that Tweety is a penguin, we retract our conclusion that Tweety flies.
Default logics (see, e.g., [Marek and Truszczyński 1993; Reiter 1980; Reiter 1987]) attempt to
capture the structure of these kinds of inferences.

• To say that birds typically fly is to say not merely that flight is statistically prevalent among birds,
but also that flight is characteristic of the type “bird”. Even though not all birds do fly, flying is
something that we do characteristically associate with birds.

• The word normal is interestingly ambiguous. It seems to have both a descriptive and a prescriptive
dimension. To say that something is normal in the descriptive sense is to say that it is the statistical
mode or mean (or close to it). On the other hand, we often use the shorter form norm in a more
prescriptive sense. To conform with a norm is to follow a prescriptive rule. Prescriptive norms
can take many forms. Some norms are moral: to violate them would be to perform a moral wrong.
For example, many people believe that there are situations in which it would be wrong to lie, even
if there are no laws or explicit rules forbidding this behavior. Laws are another kind of norm,
adopted for the regulation of societies. Policies that are adopted by institutions can also be norms.
For instance, a company may have a policy that employees are not allowed to be absent from
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work unless they have a note from their doctor. There can also be norms of proper functioning in
machines or organisms. There are specific ways that human hearts and car engines are supposed
to work, where “supposed” here has not merely an epistemic force, but a kind of normative force.
Of course, a car engine that does not work properly is not guilty of a moral wrong, but there is
nonetheless a sense in which it fails to live up to a certain kind of standard.

While this might seem like a heterogeneous mix of concepts, they are intertwined in a number of
ways. For example, default inferences are successful just to the extent that the default is normal in the
statistical sense. Adopting the default assumption that a bird can fly facilitates successful inferences in
part because most birds are able to fly. Similarly, we classify objects into types in part to group objects
into classes most of whose members share certain features. Thus, the type “bird” is useful partly because
there is a suite of characteristics shared by most birds, including the ability to fly. The relationship
between the statistical and prescriptive senses of “normal” is more subtle. It is, of course, quite possible
for a majority of individuals to act in violation of a given moral or legal norm. Nonetheless, we think that
the different kinds of norm often serve as heuristic substitutes for one another. For example, well-known
experiments by Kahneman and Tversky [Kahneman and Tversky 1982; Tversky and Kahneman 1973]
show that we are often poor at explicit statistical reasoning, employing instead a variety of heuristics.
Rather than tracking statistics about how many individuals behave in a certain way, we might well reason
about how people ought to behave in certain situations. The idea is that we use a script or a template
for reasoning about certain situations, rather than actual statistics. Prescriptive norms of various sorts
can play a role in the construction of such scripts. It is true, of course, that conflation of the different
sorts of norm can sometimes have harmful consequences. Less than a hundred years ago, for example,
left-handed students were often forced to learn to write with their right hands. In retrospect, this looks
like an obviously fallacious inference from the premise that the majority of people write with their right
hand to the conclusion that it is somehow wrong to write with the left hand. But the very ease with
which such an inference was made illustrates the extent to which we find it natural to glide between the
different senses of “norm”.

That there should be a connection between defaults, norms, typicality, and causality is not a new
observation. Kahneman and Tversky [1982], Kahneman and Miller [1986], and others have shown that
both statistical and prescriptive norms can affect counterfactual reasoning. For example, Kahneman and
Miller [1986, p. 143] point out that “an event is more likely to be undone by altering exceptional than
routine aspects of the causal chain that led to it.” Given the close connection between counterfactual
reasoning and causal reasoning, this suggests that norms will also affect causal judgment. Recent ex-
periments have confirmed this. Alicke [1992] shows that subjects are more likely to judge that someone
caused some negative outcome when they have a negative evaluation of that person. Cushman, Knobe,
and Sinnott-Armstrong [2008] have shown that subjects are more likely to judge that an agent’s action
causes some outcome when they hold that the action is morally wrong; Knobe and Fraser [2008] have
shown that subjects are more likely to judge that an action causes some outcome if it violates a policy;
and Hitchcock and Knobe [2009] have shown that this effect occurs with norms of proper functioning.

Many readers are likely to be concerned that incorporating considerations of normality and typicality
into an account of actual causation will have a number of unpalatable consequences. Causation is sup-
posed to be an objective feature of the world. But while statistical norms are, arguably, objective, other
kinds of norm do not seem to be. More specifically, the worry is that the incorporation of norms will
render causation: (1) subjective, (2) socially constructed, (3) value-laden, (4) context-dependent, and (5)
vague. It would make causation subjective because different people might disagree about what is typical
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or normal. For example, if moral values are not objective, then any effect of moral norms on causation
will render causation subjective. Since some norms, such as laws, or policies implemented within insti-
tutions, are socially constructed, causation would become socially constructed too. Since moral norms,
in particular, incorporate values, causation would become value-laden. Since there are many different
kinds of norm, and they may sometimes come into conflict, conversational context will sometimes have
to determine what is considered normal. This would render causation context-dependent. Finally, since
typicality and normality seem to admit of degrees, this would render causation vague. But causation
should be none of these things.

We believe that these worries are misplaced. While our account of actual causation incorporates
all of these elements, actual causation is the wrong place to look for objectivity. Causal structure,
as represented in the equations of a causal model, is objective. More precisely, once a suitable set
of variables has been chosen,8 there is an objectively correct set of structural equations among those
variables. Actual causation, by contrast, is a fairly specialized causal notion. Actual causation involves
the post hoc attribution of causal responsibility for some outcome. It is particularly relevant to making
determinations of moral or legal responsibility. Hitchcock and Knobe [2009] argue that attributions of
actual causation typically serve to identify appropriate targets of corrective intervention. Given the role
it is supposed to play, it is nWot at all inappropriate for actual causation to have a subjective, normative
dimension.

The philosophy literature tends to identify causation in general with actual causation. We believe
that this identification is inappropriate. The confusion arises, in part, from the fact that in natural lan-
guage we express judgments of actual causation using the simple verb “cause” (typically in the past
tense). We say, for example, that the lightning caused the fire, the assassin’s poisoning the drink caused
the victim to die, and that one neuron’s firing caused another to fire. Our language gives us no clue that
it is a rather specialized causal notion that we are deploying.

While we accept that the assignment of norms and defaults is subjective, context-dependent, and so
on, we do not think that it is completely unconstrained. In any given causal model, certain assignments
of default values to variables are more natural, or better motivated, than others. An assignment of norms
and defaults is the sort of thing that can be defended and criticized on rational grounds. For example,
if a lawyer were to argue that a defendant did or did not cause some harm, she would have to give
arguments in support of her assignments of norms or defaults. (See [Halpern and Hitchcock 2010] for
further discussion of this issue.)

6 Extended Causal Models

Following Halpern [2008], we deal with the problems raised in Section 4 by assuming that an agent
has, in addition to a theory of causal structure (as modeled by the structural equations), a theory of
“normality” or “typicality”. This theory would include statements like “typically, people do not put
poison in coffee”. There are many ways of giving semantics to such typicality statements, including
preferential structures [Kraus, Lehmann, and Magidor 1990; Shoham 1987], ε-semantics [Adams 1975;
Geffner 1992; Pearl 1989], possibilistic structures [Dubois and Prade 1991], and ranking functions
[Goldszmidt and Pearl 1992; Spohn 1988]. Halpern [2008] used the last approach, but it builds in an
assumption that the normality order on worlds is total. As we show by example, this does not allow us

8See [Halpern and Hitchcock 2010] for discussion of what makes for a suitable choice of variables
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to deal with some examples. Thus, we use a slightly more general approach here, based on preferential
structures.

Take a world to be an assignment of values to all the exogenous variables in a causal model.9

Intuitively, a world is a complete description of a situation given the language determined by the set of
endogenous variables. Thus, a world in the forest-fire example might be one where M = 1, L = 0,
and FF = 0; the match is dropped, there is no lightning, and no forest fire. As this example shows, a
“world” does not have to satisfy the equations of the causal model.

For ease of exposition, in the rest of the paper, we make a somewhat arbitrary stipulation regarding
terminology. In what follows, we use “default” and “typical” when talking about individual variables or
equations. For example, we might say that the default value of a variable is zero, or that one variable
typically depends on another in a certain way. We use “normal” when talking about worlds. Thus,
we say that one world is more normal than another. In the present paper, we do not develop a formal
theory of typicality, but assume only that typical values for a variable are influenced by the kinds of
factors discussed in the previous section. We also assume that it is typical for endogenous variables to
be related to one another in the way described by the structural equations of a model, unless there is
some specific reason to think otherwise. The point of this assumption is to ensure that the downstream
consequences of what is typical are themselves typical (again, in the absence of any specific reason to
think otherwise).

In contrast to our informal treatment of defaults and typicality, we provide a formal representation
of normality. We assume that there is a partial preorder � over worlds; s � s′ means that world s is at
least as normal as world s′. The fact that � is a partial preorder means that it is reflexive (for all worlds
s, we have s � s, so s is at least as normal as itself) and transitive (if s is at least as normal as s′ and s′

is at least as normal as s′′, then s is at least as normal as s′′).10 We write s � s′ if s � s′ and it is not the
case that s′ � s, and s ≡ s′ if s � s′ and s′ � s. Thus, s � s′ means that s is strictly more normal than
s′, while s ≡ s′ means that s and s′ are equally normal. Note that we are not assuming that � is total;
it is quite possible that there are two worlds s and s′ that are incomparable as far as normality. The fact
that s and s′ are incomparable does not mean that s and s′ are equally normal. We can interpret it as
saying that the agent is not prepared to declare either s or s′ as more normal than the other, and also not
prepared to say that they are equally normal; they simply cannot be compared in terms of normality.

One important issue concerns the relationship between typicality and normality. Ideally, one would
like to have a sort of compositional semantics. That is, given a set of statements about the typical values
of particular variables and a causal model, a normality ranking on worlds could be generated that in
some sense respects those statements. We develop such an account in a companion paper [Halpern and
Hitchcock 2012]. In the present paper, we make do with a few rough-and-ready guidelines. Suppose
that s and s′ are worlds, that there is some nonempty set ~X of variables that take more typical values in
s than they do in s′, and no variables that take more typical values in s′ than in s; then s � s′. However,
if there is both a nonempty ~X set of variables that take more typical values in s than they do in s′, and
a nonempty set ~Y of variables that take more typical values in s′ than they do in s, then s and s′ are

9It might be apt to use “small world” to describe such an assignment, to distinguish it from a “large world”, which would
be an assignment of values to all of the variables in a model, both endogenous and exogenous. While there may well be
applications where large worlds are needed, the current application requires only small worlds. The reason for this is that
all of the worlds that are relevant to assessing actual causation in a specific context ~u result from intervening on endogenous
variables, while leaving the exogenous variables unchanged.

10If � were a partial order rather than just a partial preorder, it would satisfy an additional assumption, antisymmetry: s � s′

and s′ � s would have to imply s = s′. This is an assumption we do not want to make.
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incomparable, unless there are special considerations that would allow us to rank them. This might be
in the form of statement that ~x is a more a typical setting for ~X than ~y is of ~Y . We consider an example
where such a rule seems very natural in Section 7.6 below.

Take an extended causal model to be a tuple M = (S,F ,�), where (S,F) is a causal model, and
� is a partial preorder on worlds, which can be used to compare how normal different worlds are. In
particular, � can be used to compare the actual world to a world where some interventions have been
made. Which world is the actual world? That depends on the context. In an acyclic extended causal
model, a context ~u determines a world denoted s~u. We can think of the world s~u as the actual world,
given context ~u, since it is the world that would occur given the setting of the exogenous variables in ~u,
provided that there are no external interventions.

We can now modify Definition 3.1 slightly to take the ranking of worlds into account by taking
~X = ~x to be a cause of ϕ in an extended model M and context ~u if ~X = ~x is a cause of ϕ according
to Definition 3.1, except that in AC2(a), and s ~X=~x′, ~W=~w,~u � s~u, where s ~X=~x′, ~W=~w,~u is the world that

results by setting ~X to ~x′ and ~W to ~w in context ~u. This can be viewed as a formalization of Kahneman
and Miller’s [1986] observation that we tend to consider only possibilities that result from altering
atypical features of a world to make them more typical, rather than vice versa. In our formulation,
worlds that result from interventions on the actual world “come into play” in AC2(a) only if they are at
least as normal as the actual world.

This gives us a definition of causality that, as we shall see, lets us deal with a number of problems
in the HP definition. But we can go further: we can use normality to rank actual causes. Doing so lets
us explain the responses that people make to queries regarding actual causation. For example, although
the HP approach allows for multiple causes of an outcome ϕ, people typically mention only one of them
when asked for a cause. We would argue that they are picking the best cause, where best is judged in
terms of normality. We now make this precise.

Say that world s is a witness for ~X = ~x being a cause of ϕ in context ~u if for some choice of ~Z, ~W ,
~x′, and ~w for which AC2(a) and AC2(b) hold, s is the assignment of values to the endogenous variables
that results from setting ~X = ~x′ and ~W = ~w in context ~u. In other worlds, a witness s is a world that
demonstrates that AC2(a) holds. In general, there may be many witnesses for ~X = ~x being a cause of ϕ.
Say that s is a best witness for ~X = ~x being a cause of ϕ if there is no other witness s′ such that s′ � s.
(Note that there may be more than one best witness.) We can then grade candidate causes according to
the normality of their best witnesses. We expect that someone’s willingness to judge that ~X = ~x is an
actual cause of ϕ increases as a function of the normality of the best witness for ~X = ~x in comparison
to the best witness for other candidate causes. Thus, we are less inclined to judge that ~X = ~x is an
actual cause of ϕ when there are other candidate causes of equal or higher rank.

7 Examples

In this section, we give a number of examples of the power of this definition. (For simplicity, we omit
explicit reference to the exogenous variables in the discussions that follow.) We start by considering the
example that motivated this line of research.
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7.1 Bogus prevention

Consider the bogus prevention problem of Example 4.1. Suppose that we use a causal model with three
random variables:

• A = 1 if Assassin does puts in the poison, 0 if he does not;

• B = 1 if Bodyguard adds the antidote, 0 if he does not;

• VS = 1 if the victim survives, 0 if he does not.

Then the equation for VS is
VS = max((1−A), B).

A, B, and VS satisfy exactly the same equations as 1 − L, M , and FF , respectively in Example 3.2.
In the context where there is lightning and the arsonists drops a lit match, both the the lightning and the
match are causes of the forest fire, which seems reasonable. Not surprisingly, the original HP definition
declares both A = 0 and B = 1 to be actual causes of VS = 1. But here it does not seem reasonable
that Bodyguard’s putting in the antidote is a cause.

Using normality gives us a straightforward way of dealing with the problem. In the actual world,
A = 0, B = 1, and VS = 1. The witness for B = 1 to be an actual cause of VS = 1 is the world
where A = 1, B = 0, and VS = 0. If we make the assumption that both A and B typically take the
value 0,11 and make the assumptions about the relation between typicality and normality discussed in
Section 6, this leads to a normality ordering in which the two worlds (A = 0, B = 1,VS = 1) and
(A = 1, B = 0,VS = 0) are incomparable. Since the unique witness for B = 1 to be an actual cause
of VS = 1 is incomparable with the actual world, our modified definition rules that B = 1 is not an
actual cause of VS = 1. Interestingly, our account also rules that A = 0 is not an actual cause, since
it has the same witness. This does not strike us as especially counterintuitive. (See the discussion of
causation by omission in the following section.)

This example illustrates an advantage of the present account over the one offered in [Halpern 2008],
in which normality is characterized by a total order. With a total order, we cannot declare (A = 1, B =
0,VS = 0) and (A = 0, B = 1,VS = 1) to be incomparable; we must compare them. To argue A = 1
is not a cause, we have to assume that (A = 0, B = 1,VS = 1) is less normal than (A = 1, B =
0,VS = 0). This ordering does not seem so natural.

As we hinted earlier, there is another, arguably preferable, way to handle this using the original HP
definition, without appealing to normality. Suppose we add a variable PN to the model, representing
whether a chemical reaction takes place in which poison is neutralized. The model has the following
equations:

PN = A×B;
VS = max((1−A),PN ).

This model is shown graphically in Figure 7.1. It is isomorphic to the model in Example 3.3, except that
A and 1−A are reversed. In this new model, B = 1 fails to be an actual cause of VS = 1 for the same
reason the backup’s readiness was not a cause of the victim’s death in Example 3.3. By adding PN to

11Some readers have suggested that it would not be atypical for an assassin to poison the victim’s drink. That is what
assassins do, after all. Nonetheless, the action is morally wrong and unusual from the victim’s perspective, both of which
would tend to make it atypical.

18



the model, we can capture the intuition that the antidote doesn’t count as a cause of survival unless it
actually neutralized poison.
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Figure 3: Another model of bogus prevention.

Despite the fact that we do not need normality for bogus prevention, it is useful in many other
examples, as we show in the remainder of this section.

7.2 Omissions

As we mentioned in Section 5, there is disagreement in the literature over whether causation by omission
should count as actual causation, despite the fact that there is no disagreement regarding the underlying
causal structure. We can distinguish (at least) four different viewpoints in the flower-watering example
described in the introduction:

(a) Beebee [2004] and Moore [2009], for example, argue against the existence of causation by omis-
sion in general;

(b) Lewis [2000, 2004] and Schaffer [2000, 2004] argue that omissions are genuine causes in such
cases;

(c) Dowe [2000] and Hall [2004] argue that omissions have a kind of secondary causal status; and

(d) McGrath [2005] argues that the causal status of omissions depends on their normative status:
whether the neighbor’s omission caused the flowers to die depends on whether the neighbor was
supposed to water the flowers.

Our account of actual causation can capture all four viewpoints. The obvious causal structure has
three endogenous variables:

• H = 1 if the weather is hot, 0 if it is cool;

• W = 1 if the neighbor waters the flowers, 0 otherwise;

• D = 1 if the flowers die, 0 if they do not.
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There is one equation:
D = H × (1−W ).

The exogenous variables are such that H = 1 and W = 0, hence in the actual world H = 1, W = 0,
and D = 1. The original HP definition rules that both H = 1 and W = 0 are actual causes of D = 1.
The witness for H = 1 being a cause is the world (H = 0,W = 0, D = 0), while the witness for
W = 0 is (H = 1,W = 1, D = 0). We claim that the difference between the viewpoints mentioned
above can be understood as a disagreement either about the appropriate normality ranking, or the effect
of graded causality.

Those who maintain that omissions are never causes can be understood as having a normality rank-
ing where absences or omissions are always more typical than positive events. That is, the typical value
for both H and W is 0. This ranking reflects a certain metaphysical view: there is a fundamental dis-
tinction between positive events and mere absences, and in the context of causal attribution, absences
are always considered typical for candidate causes. This gives rise to a normality ranking where

(H = 0,W = 0, D = 0) � (H = 1,W = 0, D = 1) � (H = 1,W = 1, D = 0).

The fact that (H = 0,W = 0, D = 0) � (H = 1,W = 0, D = 1) means that we can take
(H = 0,W = 0, D = 0) as a witness for H = 1 being a cause of D = 1. Indeed, most people would
agree that the hot weather was a cause of the plants dying. Note that (H = 1,W = 1, D = 0) is the
witness for W = 0 being a cause of D = 1. If we take the actual world (H = 1,W = 0, D = 1) to
be more normal than this witness, intuitively, treating not acting as more normal than acting, then we
cannot view W = 0 as an actual cause.

It should be clear that always treating “not acting” as more normal than acting leads to not allowing
causation by omission. However, one potential problem for this sort of view is that it is not always clear
what counts as a positive event, and what as a mere omission. For example, is holding one’s breath a
positive event, or is it merely the absence of breathing? If an action hero survives an encounter with
poison gas by holding her breath, is this a case of (causation by) omission?

An advocate of the third viewpoint, that omissions have a kind of secondary causal status, may be
interpreted as allowing a normality ordering of the form

(H = 0,W = 0, D = 0) � (H = 1,W = 1, D = 0) � (H = 1,W = 0, D = 1).

This theory allows watering the plants to be as normal as not watering them, and hence W = 0 can be
an actual cause of D = 1. However, H = 1 has a more normal witness, so under the comparative view,
H = 1 is a much better cause than W = 0. On this view, then, we would be more strongly inclined to
judge that H = 1 is an actual cause than that W = 0 is an actual cause. However, unlike those who
deny thatW = 0 is a cause of any kind, advocates of the third position might maintain that sinceW = 0
has a witness, it has some kind of causal status, albeit of a secondary kind.

An advocate of the second viewpoint, that omissions are always causes, could have essentially
the same ordering as an advocate of the second viewpoint, but would take the gap between (H =
0,W = 0, D = 0) and (H = 1,W = 1, D = 0) to be much smaller, perhaps even allowing that
(H = 0,W = 0, D = 0) ≡ (H = 1,W = 1, D = 0). Indeed, if (H = 0,W = 0, D = 0) ≡ (H =
1,W = 1, D = 0), then H = 1 and W = 0 are equally good candidates for being actual causes of
D = 1. But note that with this viewpoint, not only is the neighbor who was asked to water the plants
but did not a cause, so are all the other neighbors who were not asked. Moreover, the second or third
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viewpoints, if applied consistently to cases of bogus prevention, can not rule that bogus preventers are
not actual causes of some sort. (This may give us an additional reason for treating bogus prevention as
a type of preemption, as suggested in Section 7.1.)

The fourth viewpoint is that the causal status of omissions depends on their normative status. For
example, suppose the neighbor had promised to water the homeowners’ flowers; or suppose the two
neighbors had a standing agreement to water each others’ flowers while the other was away; or that the
neighbor saw the wilting flowers, knew how much the homeowner loved her flowers, and could have
watered them at very little cost or trouble to herself. In any of these cases, we might judge that the
neighbor’s failure to water the flowers was a cause of their death. On the other hand, if there was no
reason to think that the neighbor had an obligation to water the flowers, or no reasonable expectation
that she would have done so (perhaps because she, too, was out of town), then we would not count her
omission as a cause of the flowers’ death.

On this view, the existence of a norm, obligation, or expectation regarding the neighbor’s behavior
has an effect on whether the world (H = 1,W = 1, D = 0) is considered at least as normal as the
actual world (H = 1,W = 0, D = 1). If there is no reason to expect the neighbor to water the flowers,
then it is not normal. On the other hand, if the neighbor was supposed to water the flowers, then it will.
This viewpoint allows us to explain why not all neighbors’ failures to water the flowers should be treated
equally.

7.3 Knobe effects

In a series of papers (e.g., [Cushman, Knobe, and Sinnott-Armstrong 2008; Hitchcock and Knobe 2009;
Knobe and Fraser 2008]), Joshua Knobe and his collaborators have demonstrated that norms can in-
fluence our attributions of actual causation. For example, consider the following vignette, drawn from
Knobe and Fraser [2008]:

The receptionist in the philosophy department keeps her desk stocked with pens. The ad-
ministrative assistants are allowed to take pens, but faculty members are supposed to buy
their own. The administrative assistants typically do take the pens. Unfortunately, so do
the faculty members. The receptionist repeatedly e-mailed them reminders that only ad-
ministrators are allowed to take the pens. On Monday morning, one of the administrative
assistants encounters Professor Smith walking past the receptionist’s desk. Both take pens.
Later, that day, the receptionist needs to take an important message . . . but she has a prob-
lem. There are no pens left on her desk.

Subjects were then randomly presented with one of the following propositions, and asked to rank
their agreement on a seven point scale from -3 (completely disagree) to +3 (completely agree):

Professor Smith caused the problem.
The administrative assistant caused the problem.

Subjects gave an average rating of 2.2 to the first claim, indicating agreement, but−1.2 to the second
claim, indicating disagreement. Thus subjects are judging the two claims differently, due to the different
normative status of the two actions. (Note that subjects were only presented with one of these claims:
they were not given a forced choice between the two.)

21



If subjects are presented with a similar vignette, but where both groups are allowed to take pens,
then subjects tend to give intermediate values. That is, when the vignette is changed so that Professor
Smith is not violating a norm when he takes the pen, not only are subjects less inclined to judge that
Professor Smith caused the problem, but they are more inclined to judge that the administrative assistant
caused the problem.12 This is interesting, since the status of the administrative assistant’s action has not
been changed. The most plausible interpretation of this result is that subjects’ increased willingness to
say that the administrative assistant caused the problem is a direct result of their decreased willingness
to say that Professor Smith caused the problem. This suggests that attributions of actual causation are at
least partly a comparative affair.

The obvious causal model of the original vignette has three random variables:

• PT = 1 if Professor S takes the pen, 0 if she does not;

• AT = 1 if the administrative assistant takes the pen, 0 if she does not;

• PO = 1 if the receptionist is unable to take a message, 0 if no problem occurs.

There is one equation:
PO = min(PT ,AT ).

The exogenous variables are such that PT and AT are both 1. Therefore, in the actual world, we have
PT = 1, AT = 1, and PO = 1.

The HP definition straightforwardly rules that PT = 1 and AT = 1 are both actual causes of
PO = 1. (In both cases, we can let ~W be the empty set.) The best witness for PT = 1 being a cause
is (PT = 0,AT = 1,PO = 0); the best witness for AT = 1 being a cause is (PT = 1,AT =
0,PO = 0). The original story suggests that the witness for PT = 1 being a cause is more normal
than the witness for AT = 1, since administrative assistants are allowed to take pens, but professors
are supposed to buy their own. So our account predicts that we are more strongly inclined to judge that
PT = 1 is an actual cause. On the other hand, if the vignette does not specify that one of the actions
violates a norm, we would expect the relative normality of the two witnesses to be much closer, which
is reflected in how subjects actually rated the causes.

7.4 Causes vs. background conditions

It is common to distinguish between causes of some outcome, and mere background conditions that
are necessary for that outcome (e.g. [Hart and Honoré 1985]). A standard example is a fire that is
caused by a lit match. While the fire would not have occurred without the presence of oxygen in the
atmosphere, the oxygen is deemed to be a background condition, rather than a cause. The HP definition
allows us to make the distinction by taking the random variable representing the presence of oxygen to
be exogenous; it then cannot be a cause. As we now show, making use of normality allows us to avoid
having to make this exogenous/endogenous distinction.

We have three variables:
12Sytsma, Livengood, and Rose [2010] conducted the experiments. They had their subjects rate their agreement on 7-point

scale from 1 (completely disagree) to 7 (completely agree). When they repeated Knobe and Fraser’s original experiment, they
got a rating of 4.05 for Professor Smith, and 2.51 for the administrative assistant. While their difference is less dramatic than
Knobe and Fraser’s, it is still statistically significant. When they altered the vignette so that Professor Smith’s action was
permissible, subjects gave an average rating of 3.0 for Professor Smith, and 3.53 for the administrative assistant.
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• M = 1 if the match is lit, 0 if it is not lit;

• O = 1 if oxygen is present, 0 if there is no oxygen;

• F = 1 if there is a fire, 0 if there is no fire.

There is one equation:
F = min(M,O).

The exogenous variables are such that in the actual world, M = 1 and O = 1, so F = 1.

Again, F = 1 counterfactually depends on both M = 1 and O = 1, so the HP definition rules that
both are actual causes of F = 1. The witness for M = 1 being a cause is the world (M = 0, O =
1, F = 0); the witness for O = 1 being a cause is (M = 1, O = 0, F = 0). The fact that we take
the presence of oxygen for granted means that the normality ordering makes a world where oxygen is
absent quite abnormal. In particular, we require that it satisfy the following properties:

(M = 0, O = 1, F = 0) � (M = 1, O = 1, F = 1) � (M = 1, O = 0, F = 0).

We may or may not consider lit matches to be atypical, although it would be strange to have an ordering
where the match being lit is more typical than the match not being lit. After all, a given match can light
only once and burns out quickly, so it must be at least fairly typical for it not to be lit. Note that in the
partial order, the first world is the witness for M = 1 being a cause of F = 1, the second is the actual
world, and the third is the witness for O = 1 being a cause. Thus, we are inclined to judge M = 1
a cause and not judge O = 1 a cause. More generally, we can understand the setting of an exogenous
variable in the HP framework to be one such that a world where it does not have that setting is much
more abnormal that a world where it does.

Note that if the fire occurred in a special chamber in a scientific laboratory that is normally voided
of oxygen, then we would have a different normality ordering. Now the presence of oxygen is atypical,
and the witness for O = 1 being a cause is as normal as (or at least not strictly less normal than) the
witness forM = 1 being a cause. And this corresponds with our intuition that, in such a case, we would
be willing to judge the presence of oxygen an actual cause of the fire.

Our treatment of Knobe effects and background conditions is likely to produce a familiar complaint.
It is common in discussions of causation to note that while people commonly do make these kinds of
discriminations, it is in reality a philosophical mistake to do so. For example, John Stuart Mill writes:

It is seldom, if ever, between a consequent and a single antecedent, that this invariable
sequence subsists. It is usually between a consequent and the sum of several antecedents;
the concurrence of all of them being requisite to produce, that is, to be certain of being
followed by, the consequent. In such cases it is very common to single out one only of the
antecedents under the denomination of Cause, calling the others mere Conditions . . . The
real cause, is the whole of these antecedents; and we have, philosophically speaking, no
right to give the name of cause to one of them, exclusively of the others. [Mill 1856, pp.
360–361].

David Lewis says:
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We sometimes single out one among all the causes of some event and call it “the” cause, as
if there were no others. Or we single out a few as the “causes”, calling the rest mere “causal
factors” or “causal conditions” . . . I have nothing to say about these principles of invidious
discrimination. [Lewis 1973, pp. 558–559]

And Ned Hall adds:

When delineating the causes of some given event, we typically make what are, from the
present perspective, invidious distinctions, ignoring perfectly good causes because they are
not sufficiently salient. We say that the lightning bolt caused the forest fire, failing to
mention the contribution of the oxygen in the air, or the presence of a sufficient quantity
of flammable material. But in the egalitarian sense of “cause,” a complete inventory of the
fire’s causes must include the presence of oxygen and of dry wood. [Hall 2004, p. 228]

The concern is that because a cause is not salient, or because it would be inappropriate to assert that it
is a cause in some conversational context, we are mistakenly inferring that it is not a cause at all.

The “egalitarian” notion of cause is entirely appropriate at the level of causal structure, as repre-
sented by the equations of a causal model. These equations represent objective features of the world,
and are not sensitive to factors such as contextual salience. We think that it is a mistake, however, to
look for this same objectivity in actual causation. Hitchcock and Knobe (2009) argue that it is in part
because of its selectivity that the concept of actual causation earns its keep.

7.5 Causal chains

There has been considerable debate in the philosophical literature over whether causation is transitive,
that is, whether whenever A causes B, and B causes C, then A causes C. Lewis [2000], for example,
defends the affirmative, while Hitchcock [2001] argues for the negative. But even those philosophers
who have denied that causation is transitive in general have not questioned the transitivity of causation in
simple causal chains, where the final effect counterfactually depends on the initial cause. By contrast,
the law does not assign causal responsibility for sufficiently remote consequences of an action. For
example, in Regina v. Faulkner [1877], a well-known Irish case, a lit match aboard a ship caused a cask
of rum to ignite, causing the ship to burn, which resulted in a large financial loss by Lloyd’s insurance,
leading to the suicide of a financially ruined insurance executive. The executive’s widow sued for
compensation, and it was ruled that the negligent lighting of the match was not a cause (in the legally
relevant sense) of his death. Moore [2009] uses this type of case to argue that our ordinary notion of
actual causation is graded, rather than all-or-nothing, and that it can attenuate over the course of a causal
chain.

Our account of actual causation can make sense of this kind of attenuation. We can represent the
case of Regina v. Faulkner using a causal model with nine random variables:

• M = 1 if the match is lit, 0 if it is not;

• R = 1 if there is rum in the vicinity of the match, 0 if not;

• RI = 1 if the rum ignites, 0 if it does not;

• F = 1 if there is further flammable material near the rum, 0 if not;
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• SD = 1 if the ship is destroyed, 0 if not;

• LI = 1 if the ship is insured by Lloyd’s, 0 if not;

• LL = 1 if Lloyd’s suffers a loss, 0 if not;

• EU = 1 if the insurance executive was mentally unstable, 0 if not;

• ES = 1 if the executive commits suicide, 0 if not.

There are four structural equations:

RI = min(M,R)
SD = min(RI , F )
LL = min(SD ,LI )
ES = min(LL,EU ).

This model is shown graphically in Figure 7.5. The exogenous variables are such that M , R, F , LI ,
and EU are all 1, so in the actual world, all variables take the value 1. Intuitively, the events M = 1,
RI = 1, SD = 1, LL = 1, and ES = 1 form a causal chain. The HP definition rules that the first four
events are all actual causes of ES = 1.

r r r r r
r r r r
- - - -? ? ? ?

M RI SD LL ES

R F LI EU

Figure 4: Attenuation in a causal chain.

Let us now assume that, for the variables M , R, F , LI , and EU , 0 is the typical value, and 1 is
the atypical value. Thus, our normality ranking assigns a higher rank to worlds where more of these
variables take the value 0. For simplicity, consider just the most proximate and the most distal links
in the chain: LL = 1 and M = 1, respectively. The world (M = 0, R = 1,RI = 0, F = 1,SD =
0,LI = 1,LL = 0,EU = 1,ES = 0) is a witness of M = 1 being a cause of ES = 1. This
is quite an abnormal world, although more normal than the actual world, so M = 1 does count as
an actual cause of ES = 1 by our revised definition. Note that if any of the variables R, F , LI , or
EU is set to 0, then we no longer have a witness. Intuitively, ES counterfactually depends on M
only when all of these other variables take the value 1. Now consider the event LL = 1. The world
(M = 0, R = 0,RI = 0, F = 0,SD = 0,LI = 0,LL = 0,EU = 1,ES = 0) is a witness for
LL = 1 being an actual cause of ES = 1. This witness is significantly more normal than the best
witness for M = 1 being a cause. Intuitively, LL = 1 needs fewer atypical conditions to be present
in order to generate the outcome ES = 1. It requires only the instability of the executive, but not the
presence of rum, other flammable materials, and so on. Hence, the revised account predicts that we are
more strongly inclined to judge that LL = 1 is an actual cause of ES = 1 than M = 1. Nonetheless,
the witness for M = 1 being a cause is still more normal than the actual world, so we still have some
inclination to judge it an actual cause. As Moore [2009] recommends, the revised account yields a
graded notion of actual causation.
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Note that the extent to which we have attenuation of actual causation over a causal chain is not just
a function of spatiotemporal distance or the number of links. It is, rather, a function of how abnormal
the circumstances are that must be in place if the causal chain is going to run from start to finish. In the
postscript of [Lewis 1986], Lewis uses the phrase “sensitive causation” to describe cases of causation
that depend on a complex configuration of background circumstances. For example, he describes a case
where he writes a strong letter of recommendation for candidateA, thus earning him a job and displacing
second-place candidateB, who then accepts a job at her second choice of institutions, displacing runner-
up C, who then accepts a job at another university, where he meets his spouse, and they have a child,
who later dies. While Lewis claims that his writing the letter is indeed a cause of the death, it is a
highly sensitive cause, requiring an elaborate set of detailed conditions to be present. Woodward [2006]
says that such causes are “unstable”. Had the circumstances been slightly different, writing the letter
would not have produced this effect (either the effect would not have occurred, or it would not have
been counterfactually dependent on the letter). Woodward argues that considerations of stability often
inform our causal judgments. Our definition allows us to take these considerations into account.

7.6 Legal doctrines of intervening causes

In the law, it is held that one is not causally responsible for some outcome when one’s action led to that
outcome only via the intervention of a later agent’s deliberate action, or some very improbable event.
For example, if Anne negligently spills gasoline, and Bob carelessly throws a cigarette in the spill, then
Anne’s action is a cause of the fire. But if Bob maliciously throws a cigarette in the gas, then Anne is
not considered a cause [Hart and Honoré 1985].13 This reasoning often seems strange to philosophers,
but legal theorists find it very natural. As we now show, we can model this judgment in our framework.

In order to fully capture the legal concepts, we need to represent the mental states of the agents. We
can do this with the following six variables:

• AN = 1 if Anne is negligent, 0 if she isn’t;

• AS = 1 if Anne spills the gasoline, 0 if she doesn’t;

• BC = 1 if Bob is careless (i.e. doesn’t notice the gasoline), 0 if not;

• BM = 1 if Bob is malicious, 0 otherwise;

• BT = 1 if Bob throws a cigarette, 0 if he doesn’t;

• F = 1 if there is a fire, 0 if there isn’t.

We have the following equations:

F = min(AS ,BT );
AS = AN ;
BT = max(BC ,BM , 1−AS ).

This model is shown graphically in Figure 7.6. Note that we have made somewhat arbitrary stipulations
about what happens in the case where Bob is both malicious and careless, and in the cases where Anne
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Figure 5: An intervening cause.

does not spill; this is not clear from the usual description of the example. These stipulations do not
affect our analysis.

We assume that BM ,BC , and AN typically take the value 0. But we can say more. Legally, actions
can be graded on a scale of normality. Roughly speaking, in descending order of normality, we have

• prudent and reasonable;

• negligent;

• reckless;

• criminal/intentional.

While our practice so far has been to avoid comparisons of typicality between variables, such a compar-
ison clearly seems warranted in this case. Specifically, we have in decreasing order of typicality:

1. BC = 1;

2. AN = 1;

3. BM = 1.

Thus, when we compare the normality of worlds in which two of these variables take the value 0, and
one takes the value 1, we would expect the world with BC = 1 to be most normal, the world with
AN = 1 to be next most normal, and the world with BM = 1 to be least normal. Consider first the case
where Bob is careless. Then in the actual world we have

(BM = 0,BC = 1,BT = 1,AN = 1,AS = 1, F = 1).

In our structural equations, F = 1 depends counterfactually on both BC = 1 and AN = 1. Thus AC
rules that both are actual causes. (We can just take ~W = ∅ in both cases.) The best witness for AN = 1
is

(BM = 0,BC = 1,BT = 1,AN = 0,AS = 0, F = 0),

while the best witness for BC = 1 is

(BM = 0,BC = 0,BT = 0,AN = 1,AS = 1, F = 0).

13This example is based on the facts of Watson v. Kentucky and Indiana Bridge and Railroad [1910].
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Both of these worlds are more normal than the actual world. The first is more normal because AN takes
the value 0 instead of 1. The second world is more normal than the actual world because BC takes the
value 0 instead of 1. Hence, the revised theory judges that both are actual causes. However, the best
witness for AN = 1 is more normal than the best witness for BC = 1. The former witness has BC = 1
and AN = 0, while the latter witness has BC = 0 and AN = 1. Since AN = 1 is more atypical than
BC = 1, the first witness is more normal. This means that we are more inclined to judge that Anne’s
negligence is an actual cause of the fire than that Bob’s carelessness is.

Now consider the case where Bob is malicious. The actual world is

(BM = 1,BC = 0,BT = 1,AN = 1,AS = 1, F = 1).

Again, AC straightforwardly rules that both BM = 1 and AN = 1 are actual causes. The best witness
for AN = 1 is

(BM = 1,BC = 0,BT = 1,AN = 0,AS = 0, F = 0),

while the best witness for BM = 1 is

(BM = 0,BC = 0,BT = 0,AN = 1,AS = 1, F = 0).

Again, both of these worlds are more normal than the actual world, so our revised theory judges that
both are actual causes. However, now the best witness for AN = 1 is less normal than the best witness
for BM = 1, since BM = 1 is more atypical than AN = 1. So now our theory predicts that we are
more inclined to judge that Bob’s malice is an actual cause of the fire than that Anne’s negligence is.

Recall that in Section 7.3 we saw how judgments of the causal status of the administrative assis-
tant’s action changed, depending on the normative status of the professor’s action. Something similar is
happening here: the causal status of Anne’s action changes with the normative status of Bob’s action.
This example also illustrates how context can play a role in determining what is normal and abnormal.
In the legal context, there is a clear ranking of norm violations.

We end this subsection with a technical note. We said that in the case where Bob is inattentive, the
best witness for AN = 1 being an actual cause of F = 1 is (BM = 0,BC = 1,BT = 1,AN =
0,AS = 0, F = 0); whereas in the case where Bob is malicious, the best witness is (BM = 1,BC =
0,BT = 1,AN = 0,AS = 0, F = 0). Since the first of these worlds is more normal than the second,
these claims require that the first world not be a witness in the case where Bob is malicious (BM = 1).
This is correct, but assessing it requires paying close attention to the details of clause AC2(b). Consider
the case where Bob is malicious; the actual world is (BM = 1,BC = 0,BT = 1,AN = 1,AS =
1, F = 1). Could we, for example, take ~W = {BM ,BC} and ~w = {0, 1}, so that our setting is
BM = 0,BC = 1? This setting satisfies AC2(a). With this setting of BM and BC , if AN were set to
0, F would also be 0. So far, so good. But this setting does not satisfy AC2(b). Take ~W ′ = {BM } ⊆ ~W .
If we set BM to 0 (the setting it receives in ~w), and make no other interventions, then we get F = 0.
That is, the actual outcome F = 1 does not survive when we make the partial setting ~W ′ = {0}. AC2(b)
then rules that ~w is not a legitimate setting of ~W ′. As we show in the appendix, however, this result does
not hold for the earlier version of AC proposed in [Halpern and Pearl 2001].

7.7 Preemption and short circuits

Recall our example of preemption (Example 3.3). in which an assassin poisoned the victim’s drink with
a backup present. It is convenient to start our exposition with a simplified causal model that omits the
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variable representing the backup’s readiness. (Recall that for purposes of showing the assassin’s action
to be an actual cause, it did not much matter what we did with that variable.) Thus our variables are:

• A = 1 if the assassin poisons the drink, 0 if not;

• B = 1 if the backup poisons the drink, 0 if not;

• D = 1 if the victim dies, 0 if not.

The equations are
B = (1−A);
D = max(A,B).

The structure is the same as that depicted in Figure 7.5, withR omitted. In the actual world,A = 1, B =
0, D = 1. AC rules that A = 1 is an actual cause of D = 1. We can let ~W = {B}, and ~w = {0}. This
satisfies condition AC2. We thus get that the world (A = 0, B = 0, D = 0) is a witness for A = 1
being an actual cause of D = 1.

On the new account, however, this is not enough. We must also ensure that the witness is sufficiently
normal. It seems natural to take A = 0 and B = 0 to be typical, and A = 1 and B = 1 to be atypical. It
is morally wrong, unlawful, and highly unusual for an assassin to be poisoning one’s drink. This gives
rise to a normality ranking in which the witness (A = 0, B = 0, D = 0) is more normal than the actual
world in which (A = 1, B = 0, D = 1). So the revised account still rules that A = 1 is an actual cause
of D = 1.

Now let us reconsider Example 4.2, in which two bodyguards conspire to make it appear as if one
of them has foiled an assassination attempt. Let us model this story using the following variables:

• A = 1 if the first bodyguard puts in the antidote, 0 otherwise;

• P = 1 if the second bodyguard puts in the poison, 0 otherwise;

• VS = 1 if the victim survives, 0 otherwise.

The equations are
P = A
VS = max(A, (1− P )).

In the actual world, A = 1, P = 1, and VS = 1. This model is shown graphically in Figure 7.7. A
quick inspection reveals that this model is isomorphic to the model for our preemption case, substituting
P for 1 − B and V S for D. And indeed, AC rules that A = 1 is an actual cause of VS = 1, with
(A = 0, P = 1,VS = 0) as witness. Intuitively, if we hold fixed that the second bodyguard added the
poison, the victim would not have survived if the first bodyguard had not added the antidote first. Yet
intuitively, many people judge that the first bodyguard’s adding the antidote is not a cause of survival
(or a preventer of death), since the only threat to victim’s life was itself caused by that very same action.

In order to capture the judgment that A = 1 is not an actual cause of VS = 1, we must appeal to
the normality ranking. Here we have to be careful. Suppose that we decide that the typical value of both
A and P is 0, and the atypical value 1. This would seem prima facie reasonable. This would give us a
normality ordering in which the witness (A = 0, P = 1,VS = 0) is more normal than the actual world
(A = 1, P = 1,VS = 1). Intuitively, the value of A is more typical in the first world, and the value of
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Figure 6: The poisoning example reconsidered.

P is the same in both words, so the first world is more normal overall than the second. If we reason this
way, the modified theory still makes A = 1 an actual cause of VS = 1.

There is, however, a subtle mistake in this way of thinking about the normality ordering. The
variable P is not fixed by exogenous variables that are outside of the model; it is also determined by
A, according to the equation P = A. This means that when we think about what is typical for P , we
should rank not just the typicality of particular values of P , but the typicality of different ways for P to
depend on A. And the most natural ranking is the following, in decreasing order of typicality:

1. P = 0, regardless of A;

2. P = A;

3. P = 1 regardless of A.

That is, the most typical situation is one where there is no possibility of poison going into the drink. The
next most typical is the one that actually occurred. Least typical is one where the second bodyguard
puts in poison even when no antidote is added. Put another way, the most typical situation is one where
the second bodyguard has no bad intentions, next most typical is where he has deceitful intentions, and
least typical is where he has homicidal intentions. This is similar to the ranking we saw in the previous
example. Therefore, in the witness world, where A = 0 and P = 1, P depends on A in a less typical
way than in the actual world, in which A = 1 and P = 1. On this interpretation, the witness world
(A = 0, P = 1,VS = 0) is no longer more normal than the actual world (A = 1, P = 1,VS = 0). In
fact, using the guidelines we have been following, these two worlds are incomparable.

Thus, while the pattern of counterfactual dependence is isomorphic in the two cases, the normality
ranking on worlds is not. The result is that in the case of simple preemption, the witness is more normal
than the actual world, while in the second case it is not. This explains the difference in our judgments
of actual causation in the two examples. 14

This example raises an interesting technical point. Our treatment of this example involves an ex-
ception to the default assumption that it is typical for endogenous variables to depend on one another in
accordance with the structural equations. (Observant readers will note that our treatment of the preemp-
tion example earlier in this section did as well.) We can avoid this by adding an additional variable to

14Hall [2007, Sections 3.3 and 3.4] presents several examples of what he calls “short circuits”. These can be handled in
essentially the same way.
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the model, akin to the variable representing the backup’s readiness in our discussion of the preemption
example (Example 3.3). Let I represent the intentions of the second bodyguard, as follows:

• I = 0 if he has benign intentions;

• I = 1 if he has deceitful intentions;

• I = 2 if he has murderous intentions.

Now we can rewrite the equations as follows:

P = f(A, I);
VS = max(A, (1− P )),

where f(A, I) is the function of A and I that takes the value 0, A, or 1 when I = 0, 1, or 2, respec-
tively. This model is shown graphically in Figure 7.7. In this model, we can retain our guideline that
endogenous variables typically obey the structural equations. That is, the typicality or atypicality of the
way in which P depends on A can be coded by the typicality or atypicality of the values of I . Assume
that atypicality increases with increasing values of I . Now the best witnesses for A = 1 being an actual
cause of VS = 1 are (A = 0, I = 0, P = 1,VS = 0) and (A = 0, I = 2, P = 1,VS = 0). The first
of these involves P behaving less typically than in the actual world (since it now violates the equation
P = f(A, I)). The second witness involves I taking a less typical value (2 instead of 1). In the second
witness, P is behaving typically: it satisfies the equation P = f(A, I). The abnormality of the situation
is now attributed to I . Neither of these witnesses would be as normal as the actual world, so our revised
theory would still rule that A = 1 is not an actual cause of VS = 1.
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Figure 7: The poisoning example, with intentions.

This raises an interesting technical question. Is it always possible to perform this kind of maneuver?
That is, if we have a theory of typicality in which one variable typically violates one of the structural
equations, is it always possible, through the addition of suitable variables, to reproduce the normality
ordering on worlds using a theory of typicality in which the structural equations are typically obeyed?
We conjecture that it is always possible to formally construct additional variables to do this; but there
is no guarantee that such variables will correspond to any causal variables that are actually present in a
particular situation.
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8 Conclusion

According to a naı̈ve counterfactual theory of causation, effects are counterfactually dependent on their
causes. This theory faces a number of familiar difficulties. The HP definition of actual causation deals
with these by allowing effects to depend on their causes under various contingencies. This definition is
too permissive. We have attempted to improve the HP definition by bringing to bear considerations of the
normality of contingencies. The more normal the contingency in which the cause affects the outcome,
the stronger our inclination to judge that something is a cause. As we have shown, this approach allows
us to account for a wide range of judgments of actual causation.

A Appendix

A.1 The original HP definition

Halpern and Pearl [2001] offered an earlier version of Definition AC, which incorporated a more lenient
version of clause AC2(b). We reproduce here the full definition from this earlier paper:

Definition A.1: (AC′) ~X = ~x is an actual cause of ϕ in (M,~u) if the following three conditions hold:

AC1. (M,~u) |= ( ~X = ~x) and (M,~u) |= ϕ.

AC2. There is a partition of V (the set of endogenous variables) into two subsets ~Z and ~W with ~X ⊆ ~Z,
and a setting ~x′ and ~w of the variables in ~X and ~W , respectively, such that if (M,~u) |= Z = z∗

for all Z ∈ ~Z, then both of the following conditions hold:

(a) (M,~u) |= [ ~X = ~x′, ~W = ~w]¬ϕ.

(b′) (M,~u) |= [ ~X = ~x, ~W = ~w, ~Z ′ = ~z∗]ϕ for all subsets ~Z ′ of ~Z.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and AC2.

This is the same as Definition 3.1 above, except for clause (b) of AC2, which we have here marked with
a prime. AC2(b′) requires that ϕ continue to hold when we set ~W = ~w (and set other variables as well),
but it does not require that ϕ continue to hold when we set arbitrary subsets of ~W to the values assigned
in ~w. Thus AC′ clearly allows more settings ~W = ~w to be permitted.

Halpern and Pearl [2005] rejected AC′ in favor of AC, because of a counterexample due to Hopkins
and Pearl [2003].

Example A.2: A prisoner dies (D = 1) if A loads B’s gun (A = 1) and B shoots it (B = 1), or if C
loads her gun and shoots it (C = 1). The equation for D is

D = max(min(A,B), C).

In fact, A loads B’s gun, B does not shoot, but C does shoot and the prisoner dies (A = 1, B = 0, C =
1, D = 1).

AC′ rules that A = 1 is an actual cause of D = 1: even though B did not shoot, A’s loading the
gun is an actual cause of the prisoner’s death. To see why, let ~W = {B,C} and ~w = {1, 0}. In the
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contingency where B shoots and C doesn’t, the prisoner’s death is counterfactually dependent on S’s
action. AC2(b′) permits this setting, since setting B to 1 and C to 0 doesn’t change the value of D.
AC2(b) does not permit this setting, for it would force us to also consider the case where we just set C
to 0, in which case D = 0. The verdict of AC′ clearly seems wrong.

However, we could retain AC′, and deal with this case in the same way we dealt with bogus preven-
tion in Section 7.1. The witness for A = 1 being an actual cause of D = 1 is (A = 0, B = 1, C =
0, D = 0). This is not more normal than the actual world if we make the assumption that B typically
takes the value 0. Alternately, we could add a variable forB’s bullet in flight, and the structure is similar
to a case of preemption. Hence, our revised approach gives us the option of retaining AC′ instead of
AC.

AC′ has some advantages over AC, and some disadvantages. One disadvantage is that the analysis of
intervening causes in Section 7.6 does not go through on AC′. Consider the case where Bob maliciously
throws his cigarette into the gasoline: (BM = 1,BC = 0,BT = 1,AN = 1,AS = 1, F = 1). Under
AC, the best witness for AN = 1 to be a cause of F = 1 was (BM = 1,BC = 0,BT = 1,AN =
0,AS = 0, F = 0). However, under AC′, (BM = 0,BC = 1,BT = 1,AN = 0,AS = 0, F = 0)
is also a witness. We can take ~W = {BM ,BC} and ~w = {0, 1}. Setting BM to 0 and BC to 1 does
not change the value of F . AC′ does not force us to consider the partial setting BM = 0, which would
change the value of F . Since this new witness is more normal than the previous witness, it is now the
best witness. Since this is the same as the best witness for the case where Bob carelessly throws the
cigarette, our account cannot treat the two cases differently.

On the other hand, AC′ allows us to provide an elegant account of double prevention, as we now
show.

A.2 Double prevention

“Double prevention” is a phrase coined by Hall [2004] to describe a case in which a potential preventer
of some outcome is itself prevented. Schaffer [2000, 2004] describes the same sort of case, using
the term “disconnection”. Otte [1986] provides an earlier example. Suppose that a vacationer owns
a summer house in the mountains. During the summer, she builds a wall to protect the house from
avalanches. While she is away, a vandal destroys the wall. That winter, there is heavy snow, and an
avalanche damages her house. The question is whether the vandal’s action is an actual cause of the
house being damaged. On the one hand, the house would not have been damaged if it weren’t for the
vandal’s action. On the other hand, the vandal did not actually do anything to the house, or initiate a
process (such as lighting a fire in the yard) that would damage the house.

Philosophers have been split on this issue, staking out positions similar to those on the issue of
causation by omission. We do not review all of these alternatives in detail. Walsh and Sloman [2005]
compared the responses of subjects in cases of double prevention with their responses in cases of direct
causation, and also in cases of causal irrelevance, and found that subjects gave intermediate ratings in
the cases of double prevention. We now show how our account can capture this kind of intermediate
judgment.

We use a causal model, with five variables:

• WB = 1 if the wall is built, 0 if not;
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• VD = 1 if the vandal destroys the wall, 0 if not;

• WW = 1 if the wall is intact during the winter, 0 if not;

• A = 1 if there is an avalanche, 0 if not;

• HD = 1 if the house is damaged, 0 if not.

There are two structural equations:

WW = min(WB , 1−VD)
HD = min(A, 1−WW ).

This model is represented graphically in Figure A.2. The exogenous variables are such that, in the actual
world, WB = 1, VD = 1, WW = 0, A = 1, HD = 1. This is a case of double prevention, since
the wall would have prevented the avalanche from harming the house if it had been intact, but it was
prevented from doing so by the vandal. There is a causal chain from VD to WW to HD , but unlike
the causal chains discussed in Section 7.5, one link in this chain involves an absence: the absence of the
protective wall during the winter. It is for this reason that some writers have classified double prevention
together with cases of causation by omission. Since HD = 1 depends counterfactually on both A = 1
and VD = 1, the HP definition rules that both the avalanche and the vandal are actual causes of the
damage to the house.
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Figure 8: Double prevention.

Now suppose that we add normality to the picture. We assume that the typical values for WB , VD ,
and A are all 0. This gives rise to a normality ranking in which

(WB = 0,VD = 0,WW = 0, A = 0,HD = 0)
� (WB = 1,VD = 1,WW = 0, A = 0,HD = 0), (WB = 1,VD = 0,WW = 1, A = 1,HD = 0)
� (WB = 1,VD = 1,WW = 0, A = 1,HD = 1).

We can leave open the relative normality of the worlds (WB = 1,VD = 1,WW = 0, A = 0,HD = 0)
and (WB = 1,VD = 0,WW = 1, A = 1,HD = 0). The latter is a witness for VD = 1 being an
actual cause of HD = 1; in fact, it is the only witness. The former world is a witness for A = 1 being
an actual cause. But under AC′, A = 1 has another, better (more normal) witness, namely (WB =
0,VD = 0,WW = 0, A = 0,HD = 0). The world (WB = 0,VD = 0,WW = 0, A = 0,HD = 0)
is a witness forA = 1 being a cause ofHD = 1 because we can take ~W = {WB ,VD} and ~w = {0, 0}.
Setting WB = 0 and VD = 0 doesn’t change the outcome (HD = 1), even if other variables are set at
their actual values. AC2(b′) doesn’t force us to consider any other settings of ~W = {WB ,VD}. Thus,
according to the extended version of AC′, we should be more inclined to judge that the avalanche is an
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actual cause of the damage than that the vandal’s action caused the damage. The idea here is similar to
that discussed in Section 7.5. The vandal’s action only makes a difference to the house in the special
case where a wall is built, and there is an avalanche. By contrast, the avalanche would make a difference
even in the more normal case where both wall and vandal are absent.

AC2(b), however, requires us to also consider interventions that set only some of the variables in ~W .
When we set VD = 0 (and intervene on no other variables), the value of HD does change from 1 to 0.
That is, if we intervene only to stop the vandal, the wall gets built, remains intact, and protects the house
from the avalanche. Thus AC2(b) rules that that {0, 0} is not a legitimate setting for ~W = {WB ,VD}.
So under AC, the best witness for A = 1 being an actual cause is (WB = 1,VD = 1,WW = 0, A =
0,HD = 0). Under some circumstances, we may be willing to judge that this world is more normal
than (WB = 1,VD = 0,WW = 1, A = 1,HD = 0), the best witness for VD = 1. For example, if
we judge that avalanches are much more atypical than acts of vandalism, we might order the worlds in
this way. But the case no longer seems clear cut.

We leave it an open question whether AC or AC′ is superior overall.
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